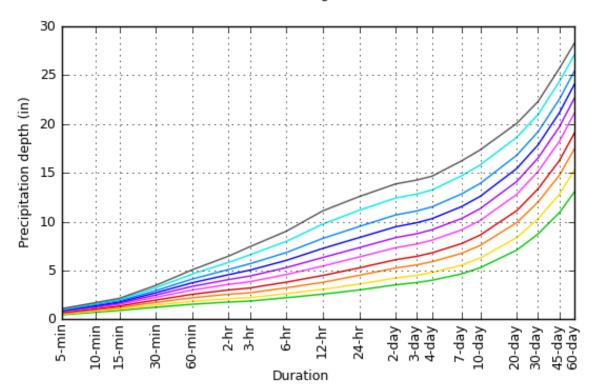


When and How to Modify Stormwater Design Standards for Climate Resiliency

Matthew Jones, PhD, PE

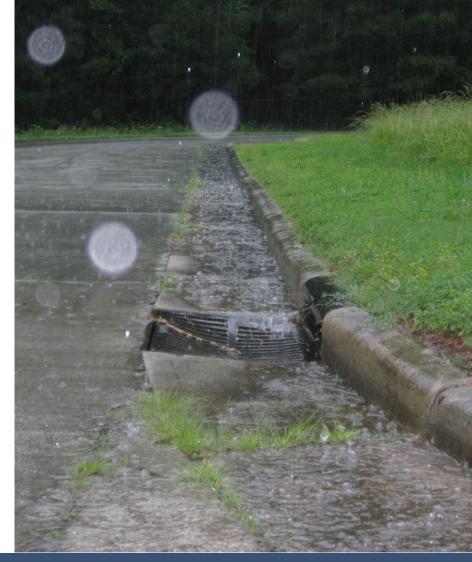
Voting Instructions

http://etc.ch/DFVo



Design Storm Background

PDS-based depth-duration-frequency (DDF) curves Latitude: 33.9833°, Longitude: -81.0167°

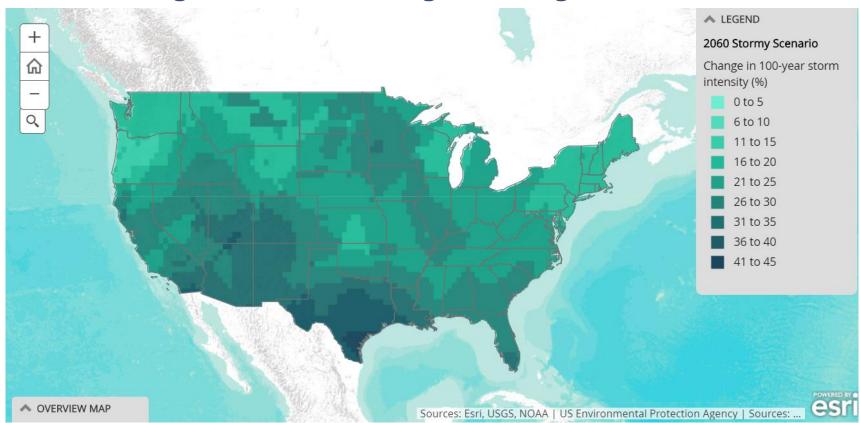

Used for:

- Peak flow estimates
- Runoff volume estimates
- Synthetic hydrographs
- Runoff routing

NOAA Atlas 14, Volume 2, Version 3

Stormwater Conveyance Design Implications

- Pipe sizing
- Size, location, and number of storm inlets
- Prevalence of surcharged / deficient infrastructure



Stormwater Control Design Implications

- BMP storage volume
- Outlet structure design
- Prevalence of undersized BMPs
- Modified drawdown and siting criteria

Accounting for Climate Change in Design Storms

EPA CREAT Climate Scenarios Projection Map

Accounting for Sea Level in Boundary Conditions

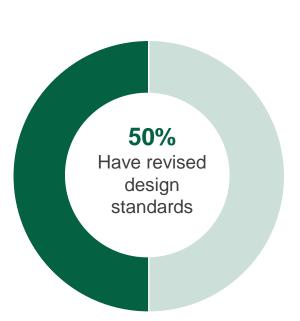
Poll Question

What is the level of interest in design standard changes in your community?

- Coastal high interest
- Coastal low interest
- Non-coastal high interest
- Non-coastal low interest

Poll Question

Does your community use stormwater design standards that account for climate change?


- Coastal Yes
- Coastal No
- Non-Coastal Yes
- Non-Coastal No

Storm Depths | Storm Intensities | Sea Level Rise

What are other communities doing?

Innovative & Integrated Stormwater Management Report Results

Nova Scotia

Innovative & Integrated

Stormwater Management

Approaches to Design Storm Adjustments

Different recurrence interval

Change in depth / intensity based on historical analysis

Change in depth / intensity based on climate forecasts

Different Recurrence Interval

Approaches to Design Storm Adjustments

Familiar adjustment

More protective than no adjustment

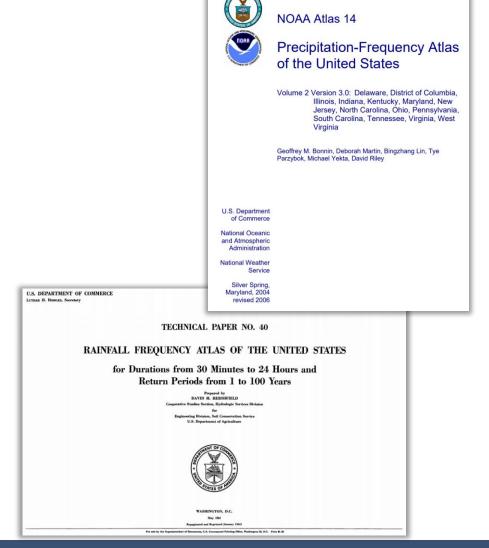
Doesn't directly correlate with climate change forecasts

Incremental increase could be large

Columbia, SC Example

Recurrence Interval	24-hr Depth	% Increase from 5-yr
5-yr	4.52"	0%
10-yr	5.28"	17%
25-yr	6.39"	41%
50-yr	7.33"	62%

Change Based on Revised Historical Analysis


Approaches to Design Storm Adjustments

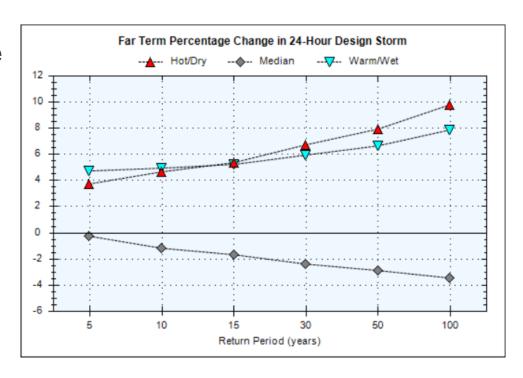
Use of more recent data

Limited uncertainty

Possibly less stakeholder resistance to change

Doesn't account for future conditions

Change based on climate forecasts


Approaches to Design Storm Adjustments

Potentially most representative of future needs

Aspects of uncertainty

Decisions regarding time period, scenario, methodology

Variable adjustment increment

Poll Question

What approach is preferred for design storm adjustments?

- Different recurrence interval
- Change in depth/intensity based upon historical analysis
- Change in depth/intensity using climate forecasts
- No change needed

Design Storm Changes

SWMM-CAT - 2045-2074 Projections

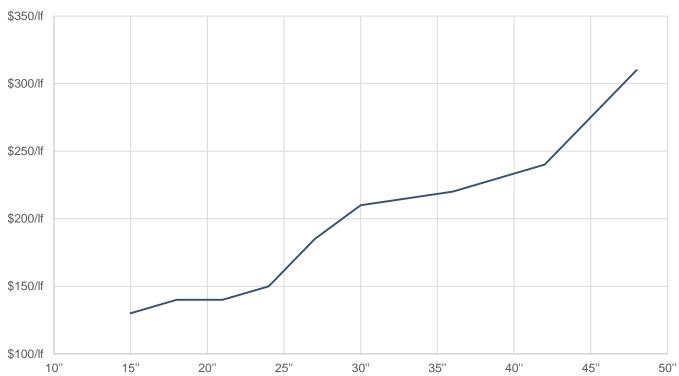
	10-y	10-yr Design Storm Depth			100-yr Design Storm Depth		
City	Hot/Dry	Median	Warm/Wet	Hot/Dry	Median	Warm/Wet	
Myrtle Beach	3.9%	-0.9%	5.3%	9.9%	-1.9%	9.0%	
Charleston	4.0%	-1.4%	4.8%	9.6%	-1.9%	8.8%	
Hilton Head	4.3%	-1.8%	4.4%	9.9%	-2.4%	8.5%	
Aiken	4.8%	-1.2%	4.3%	10.0%	-3.9%	6.9%	
Columbia	4.6%	-1.2%	4.9%	9.7%	-3.5%	7.8%	
Florence	4.4%	-0.7%	5.5%	9.4%	-2.7%	8.8%	
Greenville	5.8%	-0.2%	4.8%	10.1%	-4.3%	5.6%	
Anderson	6.0%	1.6%	4.5%	10.5%	2.2%	4.8%	
Rock Hill	5.3%	-0.3%	5.3%	9.8%	-3.6%	7.1%	

Design Storm Changes

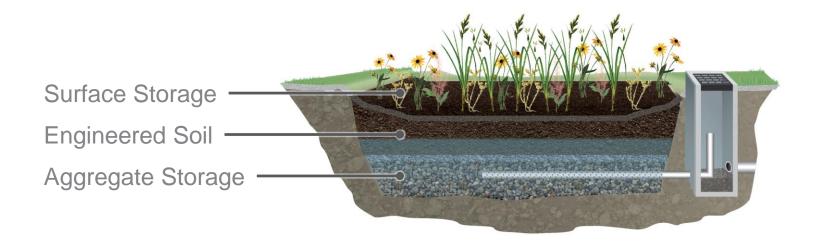
Differences in Scenario Grouping

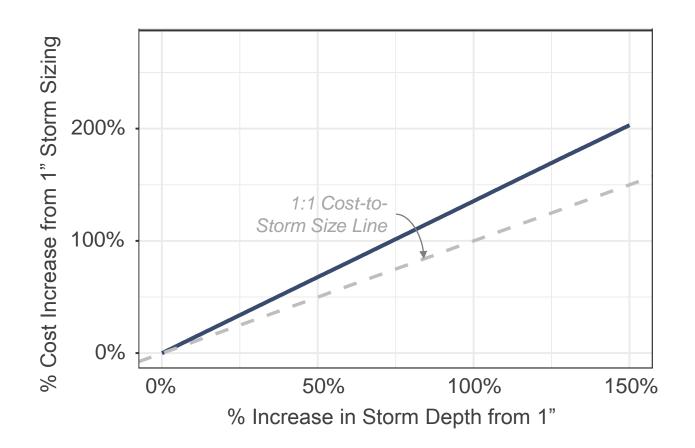
	SWMM-CAT 100-yr Design Storm Depth			EPA CREAT 100-yr Design Storm Depth	
City	Hot/Dry	Median	Warm/Wet	Stormy	Not as Stormy
Myrtle Beach	9.9%	-1.9%	9.0%	27.1%	6.6%
Charleston	9.6%	-1.9%	8.8%	28.4%	6.5%
Hilton Head	9.9%	-2.4%	8.5%	28.5%	6.7%
Aiken	10.0%	-3.9%	6.9%	25.7%	7.8%
Columbia	9.7%	-3.5%	7.8%	25.8%	7.6%
Florence	9.4%	-2.7%	8.8%	25.8%	7.0%
Greenville	10.1%	-4.3%	5.6%	23.3%	3.8%
Anderson	10.5%	2.2%	4.8%	23.4%	3.4%
Rock Hill	9.8%	-3.6%	7.1%	24.7%	8.4%

Challenges with Design Standard Modifications



Cost Implications of Pipe Size Change


Challenges with Design Standard Modifications



Cost Implications of WQ BMP Sizing

Challenges with Design Standard Modifications

Cost Implications of WQ BMP Sizing

Stormwater Detention Control Design Example

Parameter	Current 10-yr, 24-hr	Warm / Wet 2060 10-yr, 24-hr	5% Increase
Storm Depth	5.7 in	6.0 in)
Pre-Dev Runoff	9.3 cfs	10.1 cfs	
Post-Dev Runoff	14.2 cfs	15.0 cfs	
Storage Volume	10,600 ft ³	10,970 ft ³	
Peak WSE	2.4 ft	2.5 ft	

Marginal increase in peak WSE and storage volume No design changes required in this instance

Poll Question

What is the most significant hurdle to revising design standards?

- Lacking guidance
- Cost / developer opposition
- Difference from neighboring communities

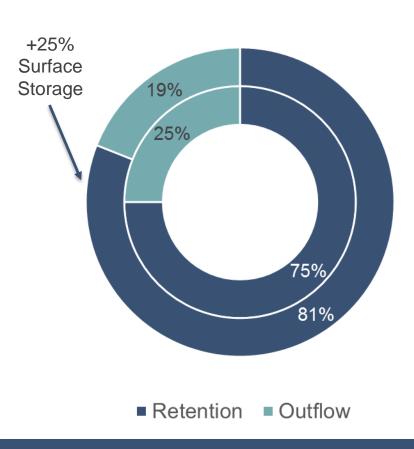
Poll Question

What could be done to best facilitate changes?

- Outreach on costs & benefits
- Tools to inform need for change
- Regional / collaborative guidance

What are benefits of making changes now?

Greater level of protection



Reduced need for future retrofits

Improved performance

Implications of 25% Increase in Bioretention Surface Storage

Questions?

Matthew Jones, PhD, PE mjones@hazenandsawyer.com