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DATA, HEAVY RAINFALL EVENTS & WATERSHEDS

INTRODUCTION & OBJECTIVE METHODS

Regionalization

Bootstrap Sampling

An Areal Based Approach for Improving Estimates of Extreme Precipitation Values

Understanding the probability of heavy rainfall events aids the design

and operation of infrastructure that could mitigate losses from hydrologic

hazards (Zhu, 2013). Estimating the probability of heavy precipitation faces

two challenges.

Challenge One: Insufficient sample sizes. Regional Frequency

Analysis (RFA) could solve the problem by “trading space for time”. However,

it is difficult to identify homogenous sets of stations that have similar extreme

value characteristics (Willems et al. 2012). RFA also creates abrupt changes

at the borders of adjacent regions.

Challenge Two: Areal representation of precipitation. NOAA’s

Atlas 14 provides point-based precipitation frequency estimates and uses

Areal Reduction Factors (ARF) to convert point-based estimates to areal

estimates. But ARF is limited to small areas and short rainfall durations.

This study provides precipitation frequency estimates based on the total

volume of precipitation received in differently-sized United States Geological

Survey (USGS) Hydrologic Units and addresses the two challenges by taking

the advantage of high-resolution gridded precipitation data and adopting a

bootstrapping approach that substitutes space for time.

Data: PRISM (Parameter-elevation Regressions on Independent Slopes

Model) that provides the gridded daily precipitation with 4 km spatial

resolution.

Time Location Watersheds Area (km2) Hydrologic Unit  

Codes

Oct. 2015
South

Carolina

Gills Creek 193 0305011002

Cooper 3,276 03050201

Mar. 2016 Texas & 

Louisiana 

Bayou 1,275 11140208

Jun. 2016 West 

Virginia

Gauley 3,276 05050005

The estimation of reoccurrence intervals of 4-day total rainfall depth in

Gills Creek is chosen for illustration. Other watersheds and 1- and 2- day

totals are reported in the results section. Total rainfall depth in a watershed is

standardized by the number of PRISM grids within the watershed (i.e., the

average rainfall depth of each grid) to facilitate comparison with observations

at weather stations.
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Figure 1 Four day total (2-5 Oct 2015) rainfall depth from PRISM and at 

stations within Gills Creek, South Carolina

REDCAP (Regionalization with Dynamically Constrained Agglomerative

Clustering And Partitioning; Guo, 2008) was employed to delimit regions with

relatively homogenous annual maximum 1-day, 2-day, and 4-day rainfall

statistical properties separately from PRISM. For each grid in PRISM, annual

maximum 1-day, 2-day, and 4-day rainfall totals were extracted. The

dissimilarity of the pairwise grids was defined by the Anderson-Darling (AD)

distance for annual maximum 1-day, 2-day, and 4-day rainfall totals. It

disproportionately weights observations in the tails of the distribution

(Anderson and Darling, 1954; Pettitt, 1976).
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Figure 2 A hypothetical example of spatially constrained clustering (i.e. 

REDCAP). Contrasts of grey shading between grids represent the AD distance 

between them. A standard non-spatial method yields two clusters: a region 

that contains grids A, B, and E and a disjointed cluster that includes grids C, D, 

and F. Spatially constrained clustering requires that every cluster at each 

hierarchical level be spatially contiguous. In this example, it would create two 

regions which contain, respectively grids A, B, D, and E and grids C and F 

(Adapted from: Kupfer et al., 2012; Gao et al. 2015).

METHODS

A layer that contains 100 non-

overlapping polygons was generated in

each year from 1981 to 2015, assuming

these extreme events have relatively similar

odds of occurrence anywhere within the

region (Figure 3). The annual maximum of

1-day, 2-day, and 4-day totals were

extracted from these randomly created

polygons. In this way, additional samples

were created to estimate GEV (Generalized

Extreme Value) parameters. This method

substitutes space for time, to account for the

limited period of record.

Probability Estimation

Figure 3 Bootstrap approach for 

Gills Creek in the region of four 

day total delineated by REDCAP

The annual maximum from the Gill Creek and random samples were

used together to fit GEV curves. The location, scale, and shape parameters of

the GEV distribution and the intensity of 2-, 5-, 10-, 25-, 50-, 100-, 200-, 400-,

600-, 800-, and 1000-year return periods were estimated using L-moments

(Hosking and Wallis, 2005). To avoid bias that might be caused by randomly

generating the layers, the procedure was repeated ten times by permutating

the layers used for sampling in each year. GEV curves were fitted using

annual maximum extracted from the randomly created datasets and the Gills

Creek each time. The intensity at each reoccurrence interval was averaged

across the ten sample sets.

RESULTS

Stations 1-day 2-day 4-day
Reference 

Source

Columbia 3.1E 500 – 1000 500 – 1000 500 - 1000

Atlas 14
Columbia 

Owens Dwtn Ap
50 – 100 200 - 500 200 - 500

Watersheds 1-day 2-day 4-day Approach

Gills Creek > 1000 > 1000 > 1000

Bootstrap
Cooper > 1000 > 1000 In progress

Bayou 80-90 ≈ 400 ≈ 500

Gauley* ≈ 100

Table 2 Return periods (years) at stations in Gills Creek and in the investigated 

watersheds

Table 1 Investigated heavy rainfall events and watersheds

* The event in Gauley was a 2-day event, so only 2-day total precipitation was 

investigated.

Summary
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Our areal-based approach (bootstrapping) showed longer return periods 

for 1-, 2-, and 4- day totals than the point based method that compared 

observations at stations against estimates  from Atlas 14, exceeding 1000 year 

(probability lower than 0.1%) in Gills Creek which had the highest number of 

failed dams during the  heavy rainfall and flooding event in South Carolina in 

October 2015. Though Atlas 14 is an engineering standard, it is point-based 

and has limitations for areal estimation. Our approach more appropriately 

measured the severity of the event.
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